Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 14: 1155728, 2023.
Article in English | MEDLINE | ID: covidwho-2305968

ABSTRACT

The advent of mRNA vaccines represents a significant advance in the field of vaccinology. While several vaccine approaches (mRNA, DNA, recombinant protein, and viral-vectored vaccines) had been investigated at the start of the COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior immunogenicity at a low dose, strong safety/tolerability profiles, and the possibility of rapid vaccine mass manufacturing and deployment to rural regions. In addition to inducing protective neutralizing antibody responses, mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses comparable to natural viral infections; thereby, drawing significant interest from cancer immunotherapy experts. This mini-review will highlight key developmental milestones and lessons we have learned from mRNA vaccines during the COVID-19 pandemic, with a specific emphasis on clinical trial data gathered so far for mRNA vaccines against melanoma and other forms of cancer.


Subject(s)
COVID-19 , Melanoma , Viral Vaccines , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , RNA, Messenger/genetics , Pandemics/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
2.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 15(4): e1880, 2023.
Article in English | MEDLINE | ID: covidwho-2284722

ABSTRACT

Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as "nanovaccines." Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , SARS-CoV-2 , Antigens , Adaptive Immunity , Nanoparticles/chemistry
3.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , Nucleic Acid-Based Vaccines/administration & dosage , Nucleic Acid-Based Vaccines/chemistry , Nucleic Acid-Based Vaccines/genetics , Nucleic Acid-Based Vaccines/immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
4.
Front Med Technol ; 2: 571030, 2020.
Article in English | MEDLINE | ID: covidwho-1639212

ABSTRACT

DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.

5.
Methods Mol Biol ; 2410: 229-263, 2022.
Article in English | MEDLINE | ID: covidwho-1575944

ABSTRACT

Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.


Subject(s)
Communicable Diseases, Emerging , Vaccines, DNA , Viral Vaccines , Animals , COVID-19 , Communicable Diseases, Emerging/prevention & control , Humans , Immunity , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
6.
Transl Med Commun ; 6(1): 13, 2021.
Article in English | MEDLINE | ID: covidwho-1458109

ABSTRACT

The causative agent of the ongoing pandemic in the world is SARS-CoV-2. The research on SARS-CoV-2 has progressed with lightning speed on various fronts, including clinical research and treatment, virology, epidemiology, drug development, and vaccine research. Recent studies reported that sera from healthy individuals, who were confirmed negative for SARS-CoV-2 by RT-PCR method, tested positive for antibodies against spike and nucleocapsid proteins of SARS-CoV-2. Further, such antibodies also exhibited neutralizing activity against the virus. These observations have prompted us to prepare a commentary on this topic. While the preexisting antibodies are likely to protect against SARS-CoV-2 infection, they may also complicate serological testing results. Another unknown is the influence of preexisting antibodies on immune responses in individuals receiving vaccines against  SARS-CoV-2. The commentary identifies the potential limitations with the serological tests based on spike and nucleocapsid proteins as these tests may overestimate the seroprevalence due to cross-reactive antibodies. The inclusion of tests specific to SARS-CoV-2 (such as RBD of spike protein) could overcome these limitations.

7.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1450242

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lung/virology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/therapeutic use , Female , Injections, Intradermal , Macaca mulatta , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Load
8.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1358338

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

9.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1197299

ABSTRACT

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Subject(s)
Coronavirus Infections/veterinary , Macaca mulatta/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines, DNA/therapeutic use , Viral Vaccines/therapeutic use , Animals , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Injections, Intradermal , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
10.
Heliyon ; 7(4): e06836, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1188590

ABSTRACT

A new pandemic is ongoing in several parts of the world. The agent responsible is the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The symptoms associated with this virus are known as the coronavirus disease-2019 (COVID-19). In this review, we summarize the published data on virus specific antibodies in hospitalized patients with COVID-19 disease, patients recovered from the disease and the individuals who are asymptomatic with SARS-CoV-2 infections. The review highlights the following: i) an adjunct role of antibody tests in the diagnosis of COVID-19 in combination with RT-PCR; ii) status of antibodies from COVID-19 convalescent patients to select donors for plasma therapy; iii) the potential confounding effects of other coronaviruses, measles, mumps and rubella in antibody testing due to homology of certain viral genes; and iv) the role of antibody testing for conducting surveillance in populations, incidence estimation, contact tracing and epidemiologic studies.

11.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: covidwho-733184

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of COVID-19, resulting in cases of mild to severe respiratory distress and significant mortality. The global outbreak of this novel coronavirus has now infected >20 million people worldwide, with >5 million cases in the United States (11 August 2020). The development of diagnostic and research tools to determine infection and vaccine efficacy is critically needed. We have developed multiple serologic assays using newly designed SARS-CoV-2 reagents for detecting the presence of receptor-binding antibodies in sera. The first assay is surface plasmon resonance (SPR) based and can quantitate both antibody binding to the SARS-CoV-2 spike protein and blocking to the Angiotensin-converting enzyme 2 (ACE2) receptor in a single experiment. The second assay is enzyme-linked immunosorbent assay (ELISA) based and can measure competition and blocking of the ACE2 receptor to the SARS-CoV-2 spike protein with antispike antibodies. The assay is highly versatile, and we demonstrate the broad utility of the assay by measuring antibody functionality of sera from small animals and nonhuman primates immunized with an experimental SARS-CoV-2 vaccine. In addition, we employ the assay to measure receptor blocking of sera from SARS-CoV-2-infected patients. The assay is shown to correlate with pseudovirus neutralization titers. This type of rapid, surrogate neutralization diagnostic can be employed widely to help study SARS-CoV-2 infection and assess the efficacy of vaccines.


Subject(s)
Antibodies, Blocking/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/diagnosis , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Guinea Pigs , Humans , Immunoglobulin G/blood , Mice , Neutralization Tests , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Primates , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL